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Biorefineries correspond to industrial sectors that employ waste

biomass to produce bioproducts such as biofuels, plastics, food and

solvents [1]. One strategy for biorefineries is to fully convert the

remaining sugars from the pretreated lignocellulosic biomass to generate

ethanol [2]. However, during second generation (2G) ethanol

fermentation, pentoses in the liquor are not metabolized by most

microorganisms. In this study, the liquid fraction from the

physicochemical pretreatment of elephant grass (EG) was used in the

production of acetic acid (AA) and lactic acid (LA) using wild type

bacteria and analyzing different concentrations of nutrients. Therefore,

the main objective of this work is to evaluate ways to reduce the

production cost of these organic acids.

[1] Ohara, 2003. Appl. Microbiol. Biotechnol. 62, 474-477.

[2] Montipó et al., 2018. Cellulose. 26, 7309-7322.

[3] Camu et al., 2007. Appl. Environ. Microbiol. 73, 1809-1824.

Detoxified and filtered 

liquor (2.5% w/v 

activated carbon, 50 °C, 

200 rpm, 1 h)

Acetic and lactic fermentation 

through Acetobacter cerevisiae

AV and Lactobacillus brevis

OR (10% v/v) at 28 °C, 120 

rpm, pH 6.0, for 48 h, in 50 mL 

vials (40 mL reaction volume). 

Experimental design for fermentation processes

The factors analyzed were: proteose peptone; yeast extract;

ammonium citrate; and dipotassium phosphate.

Central Composite Rotational Design (CCRD):

- 24,

- 3 replicates at central point,

- 27 experiments.

Results after 48 h of fermentation were evaluated using

Statistica 7.0 software (StatSoft, Tulsa, Oklahoma, USA)

Variables Levels

-2 -1 0 +1 +2

Proteose peptone (g L-1) 5.0 7.5 10.0 12.5 15.0

Yeast extract (g L-1) 2.5 3.75 5.0 6.25 7.5

Ammonium citrate (g L-1) 1.0 1.5 2.0 2.5 3.0

Dipotassium phosphate (g L-1) 1.0 1.5 2.0 2.5 3.0

Table 1 Values used in the central composite rotational design to determine the yield of organic

acids

Quantification of analytes

High Performance Liquid Chromatography

(HPLC) – (Shimadzu Corporation, Japan).

Aminex® HPX-87H column; 60 °C; 5.0

mmol L-1 H2SO4; 0.6 mL min-1.

Glucose Xylose AA LA

Fermentations were started with a cell concentration of 2.4 × 1013

CFU mL-1 for A. cerevisiae AV and 4.9 × 1011 CFU mL-1 for L. brevis OR.

After 24 h, using experiment 14 of A. cerevisiae AV, there was a

production of up to 8.18 g L-1 of LA and 6.15 g L-1 of AA from 9.16 g L-1

of initial sugars (Fig. 1a). In relation to experiment 22 of L. brevis OR,

there was a production of up to 6.89 g L-1 of LA and 5.39 g L-1 of AA in

12 h of fermentation, from 9.23 g L-1 of sugars (Fig. 1b).
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Fig. 1 Concentration of xylose, glucose, acetic acid and lactic acid and values corresponding to

optical density (OD) (600 nm) referring to microbial growth of experiment 14 (12.5 g L-1

proteose peptone; 3.75 g L-1 yeast extract; 2.5 g L-1 ammonium citrate; 2.5 g L-1 dipotassium

phosphate) of A. cerevisiae AV (a); and experiment 22 (10 g L-1 proteose peptone; 5 g L-1 yeast

extract; 3 g L-1 ammonium citrate; 2 g L-1 dipotassium phosphate) of L. brevis OR (b) using

pretreated elephant grass liquor.

Promising results can be obtained relating the production of AA and

LA in pretreated elephant grass liquor, even employing wild type bacteria.

The production of these organic acids in synthetic medium with

ammonium citrate, as the only carbon source, will be further evaluated to

better understand how this nutrient is metabolized by the studied

microorganisms.

The Pareto diagrams for A. cerevisiae AV and L. brevis OR assays

(Fig. 2) show the t-test values for each of the independent variables, as

well as their interactions. In all situations, only ammonium citrate (linear)

had statistical significance (p<0.05) and positive effect on acetic and

lactic fermentations. As indicated by Camu et al. (2007), this is because

some bacteria can metabolize citrate and produce AA and LA [3]. The

data indicates that lower contents of the other studied nutrients can be

used in the current proposal, reducing costs in the industrial production of

these chemical inputs.

Fig. 2 Pareto diagrams obtained from the central composite rotational design involving

fermentation tests with A. cerevisiae AV and the production of acetic (a) and lactic (c) acids as

response variables; as well as with L. brevis OR and the production of acetic (b) and lactic (d)

acids.
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